Radio-Frequency Radiation Safety Programs

2007 NASA Occupational Health Conference Denver, Colorado July 25, 2007

RF Safety Programs (RFSP)

□ IEEE C95.1-2005 states:

"Where there may be access to RF fields, currents and/or voltages that exceed the lower tier (Action Level) of this standard, an RF safety program such as detailed in IEEE Std C95.7-2005 shall be implemented ..."

Why implement a RFSP?

- Protect human health (ethical and moral considerations)
- Reduce liability
- Reduce potential for negative publicity
- Reduce insurance costs

IEEE RP C95.7-2005

■ Basis of a RF safety program (RFSP)

- Establishes action level
 - Lower tier of IEEE Std C95.1
 - ICNIRP general public guidelines
 - 1/5th ACGIH TLVs
 - FCC uncontrolled/general public limits

IEEE Std C95.1-2005

□ Covers 3 kHz to 300 GHz

□ Defines basic restrictions (dosimetric quantities) for 3 regions

- □ Defines 2 tiers of exposure guidelines
 - Lower tier general public or action level
 - Upper tier controlled environment

Basic Restrictions

Frequency	Dosimetric Quantity
3 kHz-5 MHz	in situ E field
100 kHz-3 GHz	SAR
3 GHz-300 GHz	Power density
100 kHz-5 MHz	in situ E field; SAR
	3 kHz-5 MHz 100 kHz-3 GHz 3 GHz-300 GHz

Determinants of Absorption

SAR = dose rate (W/kg)

Upper tier = controlled environment

Whole-body Resonance

- Frequency dependent
- Varies with body height & girth

- Basis for 5-region envelope exposure curve
- Biological basis (magnitude of limits): reversible behavior disruption

MPEs: Upper Tier

LightRay Consulting, Inc.

MPEs: General Public

Figure 4—Graphic representation of the MPEs in Table 9 (lower tier—action level)

Biological & Health Effects

	Test Animal	Human Study	
Behavior	Acute effects in learned and innate behavior. Reversible disruption in non-human primates at 3.2 to 4 W/kg.	Not conclusively demonstrated. Reported in Russia & East Europe, 1950's – 1970's. Few reports in US at very high exposure levels.	

...a measure of the health of the CNS & associated systems ...

Subjective Reports of Behavioral Effects

- Moodiness
- □ Irritability
- Unsociability
- Disturbed sleep
- □ Feelings of fear
- Mental depression

...these are also observed in members of the general population who have no remarkable exposure to RFR ...

Low-Frequency Exposure

- Low-frequency RF currents may generate heat, burns or shock
- Contact & induced current limits:
 3 kHz and 110 MHz

Electrostimulation: Bioeffects

- Aversive or painful stimulation of sensory or motor neurons
- Muscle excitation leading to injury
- Cardiac excitation
- Excitation of neurons or direct synaptic activity within the brain

Induced & Contact Current Limits

Frequency	Condition	Action	MPE	Averaging	
		Level (mA)	(mA)	Time (s)	_
3 – 100 kHz	Both feet	0.90f	2.00f	0.2	
	Each foot	0.45f	1.00f		
	Contact, grasp	None	1.00f		
	Contact, touch	0.167f	0.50f		
0.1 – 110 MHz	Both feet	90	200	360	
	Each foot	45	100		
	Contact, grasp	None	100		
	Contact, touch	16.7	50		

Elements of RFSP

- Written policy or operating procedure
- Name RF safety officer, RFSO
- □ Inventory Sources
- □ Perform exposure assessment
- Categorize work locations

RFSP Categories

RFSP Category	Exposure Condition	Control Actions Required	
1	Action level not exceeded.	None, unless maintenance or other conditions alter category.	
2	Exposure limit not exceeded.	Various.	
3	Potential to exceed OEL.	Various.	
4	OEL will be exceeded.	Restrict source output to achieve category 3, 2, or 1 or	
	LightRay Consulting, Inc.	prevent access.	

IEEE C95.7

- □ RFSP not required for Category 1 if
 - Levels < action level during operation, maintenance or service
 - RFSO not required

- □ RFSP necessary for Category 1 if
 - Levels may exceed the action level (i.e., change category) during maintenance or service

17 Duties of RFSO

- ☐ Initial evaluation & monitor changes
- Maintain inventory
- Evaluate existing safety procedures
- Document program
- Monitor legal requirements
- Disseminate RF safety policy to organization

- Advice to staff on policy & procedures
- □ Review/authorize surveys& control measures
- Maintain list of approved RF personnel
- Manage medical
 assessments for potential
 exposures potential exp >
 action level

17 Duties of RFSO

- Coordinate safety
 awareness training and
 maintain training records
- □ Conduct/arrange site audit (every 3 yrs)
- Annual review of policy & procedures
- Manage investigation of breaches of policy & procedures & incidents

- Develop/approve hazard assessment tools
- □ Arrange for regular calibration of measurement equipment
- Ensure control & archiving of all documentation

Elements of RFSP

- □ Suggested inventory criteria:
 - Device/type, frequency, radiated power, antenna type (if applicable), summary of potential for RF exposure
 - Annex C provides additional guidance on inventory

What are some sources of RF?

- Dielectric heaters
- Induction heaters
- Communications
- Broadcasting
- □ Radar
- Plasma processing

- Microwave dryers/heaters
- CRT-type VDTs
- Electrical discharge machines

Dielectric Heater

□ Used to heat dielectric materials (nonconductors)

□ Majority operate at 27 MHz

Unshielded units may produce overexposures

Round-table plastic sealer

Induction Heaters

- Heat conductors
- □ Part to be heated becomes secondary transformer winding
- Operate at low frequencies
- Frequency depends upon necessary penetration depth

Various Microwave Devices

Various Radiowave Devices

EDM Unit (electrical discharge machine)

Communications

- □ SATCOM antennas
- □ Telephony antennas
- Cell phone antennas
- □ CB radio
- □ Two-way radio
- □ High-frequency radio
- Microwave radio
- □ Tropospheric scatter

Line-of-Sight Transmission

Microwave emitters

Far pix: Long-haul & local telephone traffic

Near pix: Private microwave link for transmitting data

Cellular Telecommunications

Cell Phone Handset Antennas

Broadcasting

Phased-array AM Antennas

TV antennas – Sears Tower

4-bay FM station antennas

Radar – Commercial Uses

Radar – Military Uses

Shipboard phased-array radar

E2-C Hawkeye

Exposure Assessment

- May use existing evaluations or on-site measurements
- □ Suggests the use of NCRP Report No. 119
 - A Practical Guide to the Determination of Human exposure to Radiofrequency Fields
- Annex D information on measurement
- \square Annex E information on calculations

RF Instrumentation

Courtesy: Narda

Courtesy: ETS Lindgren

E & H-field Antennas

E-field antennas: sticks (linear)

H-field antennas: coils

Characteristics of RF Instruments

- □ Highly isotropic reception pattern
 - Spherical reception pattern
- Broad frequency range
- □ Flat response across frequency range
 - Exception is shaped-response probes
- Broad dynamic range
- Ability to monitor E & H

Shaped-response Probe

- □ Sensitivity vs. frequency
 - Inverse of the exposure guidelines
- Uses combination of diode detectors and thermocouples
- Output is percent of standard

Measurements per IEEE C95.1

- □ ≤ 30 MHz
 - Measure both E & H fields
- □ 30 < f ≤ 300 MHz
 - Far field (e.g., intentional radiator): E, H, or S
 - Near field (usu. leakage source): E & H
- □ > 300 MHz
 - Measure E, H, or S

Measurement: General Requirements

□ Determine spatial average exposure

 Determine relaxation for partial-body exposure

Spatial Averaging

Spatial Averaging

- ☐ Use dielectric "stickman" as guide
- Minimum of 10 measurements spaced20 cm apart between 0 and 200 cm from floor
- □ Arithmetic average
 - Square E or H
 - Use S as is

Numerical Modeling

S = power density (W/m² or mW/cm²)

P = power (W or mW)

Model applies to vertical antenna with horizontal omnidirectional radiation pattern

Numerical Modeling

$$S = \frac{PG}{4\pi D^2}$$

S = power density (W/m² or mW/cm²)

P = power (W or mW)

G = absolute gain

Model applies to a point-source emitter with a spherical radiation pattern.

RoofView® Software

Useful for multisignal (multiple emitters) environments

Control Measures

- Dependent upon category
- □ Summarized in Table similar to ANSI Z136.1
- □ Includes:
 - Engineering
 - Administrative
 - PPE
 - Training

*	Required	\checkmark	Optional		Not	applicab	ŀ
---	----------	--------------	----------	--	-----	----------	---

Table 2. Continued.										
RFSP Elements	Category 1	Category 2	Category 3	Category 4						
4.4 Personal Protective Equipment (PPE)										
4.4.1 Selection of appropriate PPE	_	_	✓	✓						
4.4.2 Maintenance and inspection	_	_	✓	✓						
4.5 Training	-									
4.5.1 General RF safety awareness	_	✓	*	*						
4.5.2 Explanation of RF exposure limits	_	✓	*	*						
4.5.3 RF exposure mitigation controls	_	✓	*	*						
4.5.4 Possibility of RF interaction with medical devices & implants considerations	_	✓	*	*						
4.5.5 Over-exposure incident response	_	_	*	*						
4.5.6 Electro-explosive device considerations (when present in the work environment)	_	√	*	*						
4.5.7 Sources of additional Information	_	_	✓	✓						
4.6 Program Audit										
4.6.1 Implementation (Program in use?)	_	*	*	*						
4.6.2 Adequacy of present program (program audit)	-	*	*	*						
4.7 Assess Ancillary Hazards	_	√	✓	✓						

Engineering Controls

- □ Configure equipment or site to minimize the potential for exposure
- □ Use physical barriers to restrict access
- Man-proof barriers & interlocks more effective than administrative controls

Administrative Controls

- □ Signs
- Work practices
- □ Lock-out / tag-out
- Reduction of operating power
- Time averaging exposure
- Use of personal or area monitors

Signage & Signal Words

Personal Protective Equipment

Naptex RF protective clothing

- ☐ Gloves, overalls, socks, shoes, etc.
- "...care should be used in determining whether RF protective clothing is appropriate in all exposure circumstances."
- □ Train; inspect; maintain

Training

- "RF safety awareness training is normally the single most important aspect of preventing hazardous exposure to RF energy and is often not sufficiently emphasized in RFSPS."
- □ RF safety awareness training should be provided to all individuals who may access areas where RF exposures may exceed OEL
- □ Annex A lists training elements

Training & Information

- Explanation of RF exposure limits
- □ RF exposure mitigation controls
- □ Susceptibility of medical devices & implants
- What to do in case of accidental exposure or RF-related incident
- □ Annex A lists training elements